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Abstract

In 1940, the original Tacoma Narrows Bridge was completed on June 10 and opened to traffic on July 1. On November

7, the deck collapsed. Before that day, significant vertical oscillations had occurred, but no torsion. The bridge as built was

stable with respect to torsional motion under the winds of November 7 and previous winds with higher speeds. However,

snap loads in the diagonal ties attached to the north midspan cable band helped to loosen the band, and the frictional

resistance between the band and the north suspension cable passing through it was overcome. The cable began to slip

through the band. For this new structural system, with longitudinal motion of the north cable, the wind speed was higher

than the critical speed for torsional flutter, and torsional motion was initiated. Approximately 700 cycles of torsional

oscillations occurred during the hour prior to the collapse. In the present study, the snap loads on the cable band are

discussed first. Then a continuum model of the central span (deck, cables, and hangers) is formulated. The longitudinal

motions of the cables are included, so that the slippage can be incorporated. Known information from the observed steady-

state torsional motion is utilized with assumed forms of the vertical cable displacements, and the governing equations

provide the horizontal cable displacements, the dynamic tensions in the cables, the vertical and torsional motions of the

deck, and the resultant lift force and pitching moment (including damping) acting on the deck during its final hour.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The collapse of the central span of the original Tacoma Narrows Bridge on November 7, 1940, has been
studied extensively. A thorough report (the ‘‘Carmody Report’’) was written by a governmental committee
consisting of O.H. Ammann, T. von Kármán, and G.B. Woodruff in 1941 [1]. Much information is also
included in a five-part bulletin published during 1949–1954 [2–6]. Two excellent books are Scott [7] and Hobbs
[8], and they list numerous references. Also, web sites from the Washington State Department of
Transportation [9], University of Washington [10], and Tacoma Public Library [11] include interesting
photos and facts.

Numerous physical and mathematical descriptions of the failure have been presented. The cause
of the collapse has been a controversial subject, particularly with regard to the aerodynamic forces acting
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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on the bridge (e.g., Ref. [12]). Two aspects are considered here, the forces on the cable band whose
failure led to the torsional motion of the deck, and the behavior of the central span during those torsional
oscillations.

Clark Eldridge, a bridge engineer for the Washington State Toll Bridge Authority, proposed a design in
1938. The central span was 853.4m (2800 ft) long and 11.9m (39 ft) wide, with two lanes. A truss below the
roadway was 7.6m (25 ft) deep to stiffen the deck against vertical, lateral, and torsional displacements. The
design was submitted to the US Public Works Authority (PWA), which was to provide a grant for 45 percent
of the cost, with the remainder to be borrowed from the Reconstruction Finance Corporation and paid back
from tolls. The estimated cost was $11 million. The PWA wanted to lower the cost, and a well-known
consultant, Leon Moisseiff of New York, was hired. He replaced the truss in Eldridge’s design with two
vertical (stiffening) silicon-steel plate girders along the sides, extending 1.22m (4 ft) above and below the
roadway (Fig. 1) [7,9]. Stringers and laterals with a chevron (K) configuration were placed below the deck
[1, p. 13]. The new estimated cost was $6.4 million. Even though at least one of the Washington State engineers
said that the new design was ‘‘fundamentally unsound’’ [8], they accepted the new deck so that they could get a
bridge over the Tacoma Narrows.

As an aside, a replacement bridge was built on the site 10 years after the collapse, for $14 million. It has four
lanes. The deck is 18.3m (60 ft) wide and 10.1m (33 ft) deep, with a stiffening truss below the roadway and
with three sets of diagonal shock absorbers on each side at midspan. An adjacent bridge with three lanes
opened in 2007, at a cost of $849 million.

The original bridge exhibited significant vertical oscillations during the 5 months between its completion
and its collapse. Wind speeds reached above 22m/s (50mph) [1, p. 28]. The largest reported amplitude of the
vertical motion from equilibrium was 0.76m (2.5 ft), although Professor F.B. Farquharson of the University
of Washington, who was a frequent observer at the bridge, was skeptical of this value [2]. Amplitudes of 0.4m
(1.4 ft) were often recorded.

On November 7, 1940, a wind speed of 19m/s (42mph) was measured at the eastern end of the bridge,
although the speed may have been higher on other parts of the bridge and at other times during the morning
[13]. The wind was southerly and hit the bridge obliquely. The motion of the deck before 10 a.m. was
vertical with an amplitude not more than 0.5m (1.5 ft) and had eight or more nodes in the central span [2].
(The form of the motion was determined with the use of a transit on top of the toll house on the eastern end of
Fig. 1. Torsional motion on November 7, 1940 (from Ref. [9], with permission from Washington State Department of Transportation;

GHPHSM, Bashford 2784).
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the bridge, targets on the lampposts, and a fixed target on the eastern tower.) The frequency of the motion
was 36–38 cycles per second (0.60–0.63Hz), which was significantly higher than previously reported
frequencies [2].

Around 10 a.m., the motion switched into a torsional mode with a node at midspan (Fig. 1). The initial
frequency was 14 cycles per minute (0.23Hz), but after a short time it decreased to 12 cycles per minute
(0.2Hz), perhaps due to some damage within the deck [3,14]. Although the motion of the central span changed
form somewhat during the subsequent hour, it was primarily a one-noded torsional oscillation. After
examining the films, Farquharson concluded that the maximum twist angle was about 351, corresponding to a
maximum vertical amplitude of approximately 4.3m (14 ft) along the edge of the deck [2,8]. The central span
collapsed around 11 a.m. and fell into the Tacoma Narrows [7,8,15].

Torsional oscillations had not been observed on the bridge prior to its last hour. They occurred because of a
change in the structure: loosening of the north midspan cable band. This event will be discussed in the next
section. It involves snap loads in the diagonal ties that were attached to the cable band. Then the ensuing
steady-state torsional motion will be considered. In Section 3, a continuum model of the central span will be
formulated. It will be more general than previous models, involving the longitudinal motions of the cables that
occurred after the frictional resistance in the band was overcome. Results will be presented in Section 4.
Approximate solutions will be obtained for the displacements of the deck and cables, the forces in the cables,
and the resultant vertical force and pitching moment acting on the deck. Concluding remarks will be given in
Section 5.
2. North midspan cable band

2.1. Behavior before torsional motion occurred

Hanging from each of the two main suspension cables connecting the two towers were 55 sets of four
vertical hangers (suspenders), spaced 15.2m (50 ft) apart. Fig. 2 is a photograph, taken during construction, of
one of the sets of hangers at midspan, along with two diagonal ties (stays, guys). The hangers consisted of
two wire ropes that looped over a cable band (sheath, collar) and were attached to the top of the plate girder.
Fig. 2. Diagonal ties and midspan cable band (from Washington State Archives, with permission).
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The diagonal ties were placed at the midspan cable band to reduce relative longitudinal motions between the
cable and the deck, and to prevent torsional motion of the deck [6]. As long as the friction between the band
and the cable kept the cable from slipping through the band (i.e., until 10 a.m. on November 7), the diagonal
ties were effective [16].

The cable bands were made of welded steel for the first time in a suspension bridge, and were lighter than the
normal ones made of cast steel [7,13,17]. The two semi-cylindrical halves, one on each side of the cable, were
connected by three horizontal bolts at the top and three at the bottom. The bolts were initially tightened to a
tensile stress of 360MPa (52 ksi), and were checked and tightened periodically [18] since bolt loads tend to
relax [19].

The hangers were 7� 7 galvanized steel ropes with a diameter of 3.2 cm (1.25 in.) [20]. They rested on a
heavy paste in grooves at the top of the cable band [18]. The upper part of the diagonal ties was galvanized
steel bridge strand with a diameter of 3.8 cm (1.5 in.) [4]. The ties were attached underneath the cable band
with lugs, and to the top of the plate girder with clips [1, p. 16]. A turnbuckle between the bridge strand and
the plate girder allowed for the tension to be adjusted, but unfortunately only nominal pretension was applied
to the ties [1, p. 55].

The cables had a diameter of 0.44m (1.44 ft). They consisted of 19 parallel strands of 332 No. 6 galvanized
cold-drawn steel wires. Between adjacent bands, the cables were tightly wrapped circumferentially with No. 9
soft annealed and double-galvanized wire, to make them smooth and waterproof [4,13].

Before 10 a.m. on November 7, W.F. Miles of the Pacific Bridge Company noted that the diagonal ties
attached to the north midspan cable band were alternately becoming slack and taut [1, p. V-14]. A short part
of his film of this behavior is located at the Special Collections Division of the University of Washington. Two
still pictures from the film, taken at approximately 9:40 a.m., are shown in Fig. 3. The tie is taut in the top
picture and slack in the bottom one. This action resulted in snap loads being applied to the cable band
(i.e., impact-like forces when a tie became taut), in alternating directions longitudinally [1, p. 31]. These snap
loads apparently helped cause the cable band to become loose.
Fig. 3. Taut (top) and slack (bottom) conditions of midspan tie just before torsion (with permission from University of Washington

Libraries, Special Collections, Negative number UW26370).
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Fig. 4. North (bottom) and south (top) midspan cable bands after deck collapse (from Richard S. Hobbs, with permission from

Washington State Archives).
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Starting around 10 a.m., the north cable began slipping through the midspan band back and forth with an
amplitude of 0.51m (1.67 ft) [1, p. 57]. The wrapping was pushed aside, and 351 of the 6308 wires in the cable
broke, mostly near the top of the cable [13]. Fig. 4 is a photo of the midspan cable bands after the bridge
collapsed. Some of the broken wires can be seen on the north cable, at the bottom of the figure, whereas the
south cable band shows no evidence of cable slippage. A close-up photo of one set of broken wires on the
north cable is shown in Fig. 5.

The importance of the slippage can be seen in Fig. 6 [21], a sketch of possible cable and deck displacements
(dashed curves) along the north edge of the deck. For one-noded torsional motion, one half of the edge (on the
left of the figure) will tend to move downward and the other half will tend to move upward, for example. The
cable above the edge will tend to do the same. If the ends of the cable at the towers do not move, the arc length
of the cable on the left side between the tower and midspan wants to increase, whereas the arc length on the
right side wants to decrease. Hence the midpoint of the cable wants to move to the left in the figure, from c to
c0. The cable on the other edge of the deck tends to move in the opposite direction as the deck twists about its
centerline. When both midspan cable bands in the bridge restrain the cables from such slippage, torsional
motion is prevented or at least hindered.

2.2. Models of snap loads on cable band

In this subsection, the longitudinal (horizontal) forces on the north midspan cable band, before slippage
occurred, are considered. Fig. 7 is a sketch of the band, the left diagonal tie, the hangers passing over the band,
and a section of cable (shaded). Based on the plan for the bridge, the dimensions are Lw ¼ 2.1m (6.8 ft),
Ls ¼ 4.0m (13.2 ft), Ds ¼ 4.8m (15.7 ft), Lo ¼ 1.5m (5.0 ft), and LB ¼ 0.7m (2.3 ft). Various mathematical
models can be used to try to represent the effects of the snap loads on the band.

The single-degree-of-freedom system shown in Fig. 8 is considered in this section. A mass m is subjected to
harmonic forcing P sin (OT–c), where T denotes time, and the resulting motion is U(T). The ties are assumed
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Fig. 5. Broken cable wires at north midspan cable band (from Ref. [9], with permission from Washington State Department of

Transportation).
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to have no pretension, so the left tie is active (taut) when U40 and its restoring (tension) force is FL. The case
of tension here can be related to the opposite case of impacts between two bodies [22,23], and hence FL is
depicted on the right side of the figure as if it represented a compressive force. Models such as that in Fig. 8
have been considered in many papers, including Refs. [24–26]. Periodic motions with period 2p/O are of
interest here. It is assumed that U(0) ¼ 0 and Vo40, where Vo is the initial velocity. Results for the first half-
cycle can then be utilized directly to obtain the motion for the second half-cycle, during which the active tensile
force from the right tie is denoted FR.

When U40, the equation of motion is assumed to have the form

m
d2U

dT2
þ CL

dU

dT
þ KLU þ KNU1:5 1þ

cN

Vo

dU

dT

� �
¼ P sinðOT � cÞ. (1)
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Fig. 6. Cable and hanger deformations during torsion (from Ref. [21], with permission from ASCE).

Fig. 7. Sketch of midspan cable band and one diagonal tie.

Fig. 8. Single-degree-of-freedom model for snap loads on cable band.

R.H. Plaut / Journal of Sound and Vibration 309 (2008) 613–636 619
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where CL is a linear viscous damping coefficient, KL is a linear stiffness coefficient, and KN and cN are
parameters in a nonlinear coupled term that involves both displacement and velocity. The second, third, and
fourth terms in Eq. (1) represent possible forms for FL.

The following quantities are defined:

a ¼

ffiffiffiffiffiffiffi
KL

m

r
; t ¼ aT ; o ¼

O
a
; p ¼

P

KL �mO2
, (2a2d)

u ¼
U

p
; z ¼

CL

2
ffiffiffiffiffiffiffiffiffiffiffi
KLm
p ; kN ¼

KN
ffiffiffi
p
p

KL

; f L ¼
F L

KL �mO2
. (2e2h)

Then Eq. (1) can be written in the nondimensional form

d2u

dt2
þ 2z

du

dt
þ uþ kNu1:5 1þ

cN

vo

du

dt

� �
¼ ð1� o2Þ sinðot� cÞ. (3)

The first case discussed is called Case I. Short impacts are sometimes represented via a coefficient of
restitution r. For example, in Ref. [27] the snap load of a cable was assumed to instantaneously reverse the sign
of the velocity, so that just after the taut phase the velocity was �r times the velocity just before it. Here, the
velocity does not change sign at T ¼ 0, so the velocity just after T ¼ 0 is assumed to be r times the velocity just
before T ¼ 0 (as with the impacts in Ref. [28]). In Case I it is assumed that z ¼ 0 and kN ¼ 0, i.e., the second
and fourth terms in Eq. (3) are deleted, so that the only loss of energy occurs at the slack/taut transition twice
a cycle, once for the left tie and once for the right tie.

With the use of the conditions u(0) ¼ 0, u(p/o) ¼ 0, and v(p/o) ¼ �vo/r, where v ¼ du/dt and vo is the
nondimensional velocity just after t ¼ 0, the solution of Eq. (3) for 0otop/o (the first half-cycle) is

uðtÞ ¼ sinc cos t�
½1þ cosðp=oÞ�

sinðp=oÞ
sinc sin tþ sinðot� cÞ. (4)

In Eq. (4), the phase c is computed from

tan c ¼
ð1� rÞo sinðp=oÞ
ð1þ rÞ½1þ cosðp=oÞ�

. (5)

Numerical results for Case I are presented in Fig. 9 for the parameters o ¼ 0.8, r ¼ 0.8, and vo ¼ 0.6953,
which yield c ¼ �0.2114. The time history of the displacement is shown in Fig. 9(a). In the velocity history in
Fig. 9(b), there is a jump in the magnitude of velocity from 0.8691 to 0.6953 at t ¼ 0 and t ¼ 3.93 ¼ p/o. The
phase plane in Fig. 9(c) shows the discontinuities in the velocity when u ¼ 0, and the force–displacement plot
in Fig. 9(d) is just a straight line through the origin, since the only loss of energy is due to the discontinuity
in velocity.

The second model to be considered, Case II, involves a discontinuous force rather than a discontinuous
velocity. Again the effect of the slack/taut transition is assumed to be instantaneous. A spring and a dashpot
are used here, so that only the fourth term in Eq. (3) is deleted, i.e., kN ¼ 0. The dashpot causes a sudden force
when the tie becomes taut at t ¼ 0. In order to prevent a sudden change of force when the taut tie becomes
slack, it is assumed that the dashpot is only active when the tie is elongating. When u40, therefore, z40 if
v40, and z ¼ 0 when vo0.

Let t1 denote the time during the first half-cycle at which v ¼ 0 and the dashpot becomes inactive. Eq. (3)
can be solved analytically for 0otot1 and for t1otop/o, with u and v continuous at t ¼ t1, u(0) ¼ u(p/
o) ¼ 0, and v(p/o) ¼ �vo. For the parameters o ¼ 0.8 and (for 0otot1) z ¼ 0.02, a numerical solution was
obtained using Mathematica [29]. The results were vo ¼ 0.7855, c ¼ �0.04318, and t1 ¼ 1.9636 ¼ 0.50003p/o.
Plots analogous to those in Fig. 9 are presented in Fig. 10. In this case, the displacement and velocity are
continuous, and the force–displacement relationship in Fig. 10(d) exhibits a hysteresis loop with a
discontinuity of 0.0314 in the force during each half-cycle (as seen in the magnified version of the behavior at
the origin, shown in the inset).

Finally, Case III involves a tie force with a coupling between displacement and velocity. Similar forces
dealing with impacts have been considered before, e.g., in Refs. [30–34]. Refs. [30,34] utilized the exponent 1.5
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Fig. 10. Steady-state response of single-degree-of-freedom model with spring and (while elongating) dashpot: (a) displacement vs. time; (b)

velocity vs. time; (c) velocity vs. displacement; and (d) force vs. displacement.

Fig. 9. Steady-state response of single-degree-of-freedom model with spring and coefficient of restitution: (a) displacement vs. time; (b)

velocity vs. time; (c) velocity vs. displacement; and (d) force vs. displacement.
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on the displacement, as in Eq. (3), based on the Hertz contact law from elasticity. Neither the velocity nor the
force is discontinuous in this model. During static or dynamic elongation, wire ropes tend to stiffen, and this
property is modeled here.
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Fig. 11. Steady-state response of single-degree-of-freedom model with nonlinear coupled tie force: (a) displacement vs. time; (b) velocity

vs. time; (c) velocity vs. displacement; and (d) force vs. displacement.
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The subscript L is replaced by N in Eqs. (2), and the second and third terms in Eq. (3) are deleted. Eq. (3)
was then solved numerically for the conditions o ¼ 0.8, cN ¼ 0.15, u(0) ¼ 0, vo ¼ 0.8691, and v(p/o) ¼ �vo.
The numerical solution yields kN ¼ 0.3279 and c ¼ �3.0911. The results are plotted in Fig. 11. Similar
force–displacement hysteresis loops have been obtained experimentally from drop tests with parachute lines
[35], drop tests with synthetic fiber ropes [36], and vibration tests with synthetic fiber ropes that exhibited slack
and taut phases [37].

For the remainder of this paper, a continuum model of the central span will be formulated and then
analyzed under the conditions of steady-state torsional oscillations existing during the last hour of the original
Tacoma Narrows Bridge.

3. Previous continuum models of central span

Some papers that have considered section models of the Tacoma Narrows Bridge (i.e., motion of a cross
section) are listed in Ref. [38]. Here, some of the studies utilizing continuum models of the central span are
described. In this section, the coordinate along the deck is denoted x, time is t, the vertical motion of the
centerline of the deck is y(x, t), the torsional motion of the deck about the centerline is y(x, t), and the vertical
motions of the cables are z1(x, t) and z2(x, t) if there is torsion of the deck, and z(x, t) if there is no torsion.

3.1. Vertical motion of deck: y(x, t)

Lazer and McKenna [39] considered the deck as a beam and the hangers as an elastic continuum (Winkler
foundation) that only acted in tension. Hence the equation of motion for y(x, t) was nonlinear, and multiple
periodic solutions could exist when the beam was subjected to a distributed vertical force that varied
harmonically over time. Subsequent analyses of this nature include Refs. [40–49]. Discussions of the
Lazer–McKenna conjecture that slack/taut behavior of the hangers was important to the collapse of the
bridge include Refs. [50,51].
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3.2. Vertical motions of deck and cables: y(x, t) and z(x, t)

Lazer and McKenna [39] also analyzed a model including coupled equations of motion for y(x, t) and z(x, t),
assuming no rotation of the deck. The cables were treated as strings, with no bending stiffness, and again the
hangers were assumed to exhibit slack/taut behavior. A vertical harmonically varying force was applied to the
cables, and multiple periodic solutions were demonstrated. Related papers include Refs. [41,52–58].

3.3. Torsional motion of deck: y(x, t)

Moore [59] considered torsional motions y(x, t), assuming uniform (St. Venant) torsion and an applied
moment that varied harmonically in time. The hangers were assumed to remain taut. It was shown that
multiple periodic solutions may exist.

3.4. Vertical and torsional motions of deck: y(x, t) and y(x, t)

Jacover and McKenna [60] analyzed coupled equations for y(x, t) and y(x, t), with the bilinear hanger
behavior as described in Section 3.1. The equation for torsional motion included the nonuniform (warping)
torsion term, but not the uniform torsion term. Harmonically varying forces and moments were applied along
the beam. Again, multiple solutions were obtained. Ahmed and Harbi [61] included uniform and nonuniform
torsion terms, and Moore [62] assumed uniform torsion. Numerous papers have studied flexural–torsional
motions of suspension bridges without invoking slack/taut behavior of the hangers, such as Refs. [63,64].

3.5. Vertical and torsional motions of deck, and vertical motions of cables: y(x, t), y(x, t), z1(x, t), and z2(x, t)

Diaferio and Sepe [65] formulated four coupled equations of motion for y(x, t), y(x, t), z1(x, t), and z2(x, t).
Uniform torsion was assumed, and a smooth nonlinear force was used to approximate the bilinear (slack/taut)
model of the hangers described previously. Numerical solutions were only presented for the special cases of
Sections 3.2 and 3.4 above, i.e., first with y(x, t) ¼ 0 and z1(x, t) ¼ z2(x, t), and then with z1(x, t) ¼ z2(x, t) ¼ 0.

3.6. Summary and present approach

The hangers of the Tacoma Narrows Bridge probably remained in tension during the torsional oscillations
[66]. Also, the switch from vertical to torsional motions occurred because of a change in the system, not
because of a change from one steady-state solution to another in a given system, and not because of some
particular disturbance or increase in excitation. Therefore, the analyses in many of the references cited above
in Sections 3.1–3.5 may not be directly relevant to the collapse of the original Tacoma Narrows Bridge.

The analysis to be presented in the following section does not assume mathematical forms to represent the
effects of the wind and structural damping on the torsional oscillations. Many papers have discussed the
aerodynamic forces on the original Tacoma Narrows Bridge, including Refs. [67–74]. Most models assume
that the displacements and velocities about the equilibrium state are small (e.g., that the square of the twist
angle y is negligible compared to unity). A nonlinear term of the van der Pol type, proportional to the product
of y2 and the angular velocity, was included in Refs. [75–77]. Large motions will be allowed here. The cable
motions and tensions, deck motions, and resultant vertical force and pitching moment acting on the deck
during the torsional oscillations will be determined, based on the observed behavior of the bridge during its
final hour.

4. Formulation of new continuum model of central span

4.1. Assumptions

Fig. 12 depicts a sketch of the side view of the bridge, not showing the diagonal ties and only showing some
of the 55 sets of hangers on one side. Fig. 13 shows a perspective of the span.
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Fig. 12. Side view of central span.

Fig. 13. Perspective view of central span.
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During the torsional motion, it was observed (e.g., Fig. 1) that the side spans tended to be relatively quiet
[1, p. 31], and the effects of their motions are not considered. It is assumed that the weight of the deck in the
central span is carried by the two cables, i.e., contributions from the towers and the shear forces from the side
spans are neglected; this is a common assumption for suspension bridges [78]. At the tops of the towers, the
cables pass over saddles that have a horizontal length of 34.2m (13.8 ft) [79], and it is assumed that the cables
do not slip over the saddles. Longitudinal motions of the deck were reduced by the actions of hydraulic jacks
(buffers, dampers) located at the towers [1, p. 16] and by the ties at midspan, and such motions are neglected
here. The maximum lateral motion of the deck during the torsional oscillations was reported to be about 0.6m
(2 ft) [1, p. 49], which is small compared to the span length of 853.4m (2800 ft); lateral motions of the deck,
hangers, and cables are neglected.

The snap loads that were important in the initiation of the torsional motion are not included in this
steady-state dynamic analysis, nor are friction forces between the cable bands and the cables. According to
Ref. [1, p. 57], for cable 2, when the motion made the transition from vertical to torsional, ‘‘the resistance of
the band practically disappeared’’ and the cable slipped freely back and forth through the band. With regard
to cable 1, it is assumed in the present analysis that it has no longitudinal motion at its midspan band.
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The cables are assumed to be linearly elastic and inextensible, as is normally done [78], although the
inextensibility assumption is slightly relaxed in the numerical solution of the governing equations. The bending
stiffness of the cables is neglected. The hangers are modeled as a linearly elastic continuum, as in many of the
previous analyses, and here the hangers remain in tension during the oscillations. Their stiffness is based on
the equilibrium length (i.e., LH in Fig. 12), and their weight and inertia are not considered.

Wind and damping forces on the cables and hangers are neglected. Due to the camber of the deck, the wind
from the south naturally causes some tilting of the deck such that the north side is lower than the south side
(in the absence of torsional motion), but this effect is ignored. The deck is modeled as a uniform,
homogeneous, linearly elastic, Euler–Bernoulli beam with an H-shaped cross section. The vertical motion of
the centerline (but not the edges) is assumed to be small, i.e., the square of its slope along the centerline,
relative to its slope at equilibrium, is negligible compared to unity. A nonlinear torsion term is included in the
equation of motion for the twist angle [80], along with linear uniform and nonuniform torsion terms.

The following features are included in the continuum model: (a) The twist angle is allowed to be large, due
to the inclusion of the nonlinear torsion term. In addition, another approximate pitching moment is computed
by neglecting the deck’s torsional resistance, showing that much of the resistance to torsion is due to the
hanger-cable system and the rotational inertia, as previously claimed in Refs. [4,67,81]. (b) Motions of the
cables are allowed to be large, as well as the dynamic tension forces in the cables. (c) There is no restriction on
the size of the damping or aerodynamic forces, whose combined form is determined rather than assumed.
(d) Both transverse and longitudinal inertias of the cables are included. (e) Slippage of the north cable through
the midspan cable band is modeled. (f) The camber of the deck is included. (g) The stiffness of the hangers is
not assumed to be constant along the span, unlike some previous studies. (h) Per unit length along the span,
the weight of each cable is about one-sixth of the weight of the deck. For equilibrium, the weights of the cables
and the deck are included, so that the shape of the cables is neither a parabola (as it would be without cable
weight) nor a catenary (as it would be without deck weight) [82].

4.2. Parameters and variables

The width of the deck is denoted 2D, the length of the central span is L, the equilibrium length of each cable
between the towers is LC, the height of the plate girders is 2H, the difference between the midspan height of the
deck and its height at the towers is Do, the equilibrium height of the cable centerlines above the top of the plate
girders at midspan is Lo, the sag of the cables is L1, the weight of the deck per unit length along the span is WD,
the weight of a cable per unit length is WC, the modulus of elasticity of the deck is ED, the moment of inertia of
the deck cross section with respect to a horizontal line through its centroid is ID, the polar mass moment of
inertia of the deck is IP, the warping constant of the deck is Iw, the shear modulus of the deck is GD, the
torsional constant of the deck is JD, the nonlinear Wagner constant of the deck is In [80], the effective modulus
of elasticity of the cables is EC, the effective modulus of elasticity of the hangers is EH, the effective cross-
sectional area of each hanger is AH, the effective cross-sectional area of each cable is AC, and the frequency of
torsional oscillations is O. The values of these parameters are assumed to be [1,2,83,84]

D ¼ 5:94m ð19:5 ftÞ; L ¼ 853:4m ð2800 ftÞ; LC ¼ 868:7m ð2850 ftÞ,

H ¼ 1:22m ð4 ftÞ; Do ¼ 5:5m ð18 ftÞ; Lo ¼ 1:5m ð5 ftÞ; L1 ¼ 70:7m ð232 ftÞ,

W D ¼ 2734 kN=m ð4270 lb=ftÞ; W C ¼ 458 kN=m ð715 lb=ftÞ,

ED ¼ 200GPa ð29� 106 lb=in:2Þ; ID ¼ 0:154m4 ð17:8 ft4Þ,

IP ¼ 106; 500N s2 ð23; 940 lb sec2Þ; Iw ¼ 5:44m6 ð6780 ft6Þ,

GD ¼ 80GPa ð11:6� 106 lb=in:2Þ; JD ¼ 6:07� 10�6 m4 ð7:03� 10�4 ft4Þ,

In ¼ 528m6 ð657; 900 ft6Þ; EC ¼ EH ¼ 185GPa ð27� 106 lb=in:2Þ,

AH ¼ 6:4 cm2 ð0:99 in:2Þ; AC ¼ 0:123m2 ð191:3 in:2Þ; O ¼ 1:26 rad=s. ð6Þ

The value used for EC and EH is conventional in the design of suspension bridges, according to Ref. [2], and
the cables and hangers are assumed to have an air void of approximately 20% in the calculation of their
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effective areas [1,2,85]. The value of In is computed using the formula in Ref. [80] for a doubly symmetric I
section. For the flanges of the I section, representing the plate girders, the thickness is 1.3 cm (0.5 in.) and the
width is 2.4m (8 ft). For the web (i.e., the roadway), the effective thickness is assumed to be 0.15m (0.5 ft) and
the width is 12m (39 ft). Due to the stiffness of the deck, the resisting moment MD about the centerline,
including terms for uniform, nonuniform, and nonlinear torsion, is assumed to be [80]

MD ¼ GDJD

qyd

qX
� EDIw

q3yd

qX 3
þ

1

2
EDIn

qyd

qX

� �3

. (7)

In Eq. (7), yd is the twist angle relative to equilibrium.
In Figs. 12 and 13, cable 1 is the south cable and cable 2 is the north cable. For cable j, in the vertical plane,

at arc length Sj from the top of the left tower, the rotation is fj(Sj,T) and the coordinates are Xj(Sj,T) and
Zj(Sj,T), where T is time and the positive senses are shown in the figures. The tension in cable j is Nj(Sj,T).
Letting subscripts e and d denote equilibrium and dynamic values, respectively, these variables are written in
the component form

X jðSj ;TÞ ¼ X eðSjÞ þ X jdðSj ;TÞ; ZjðSj ;TÞ ¼ ZeðSjÞ þ ZjdðSj ;TÞ;

fjðSj ;TÞ ¼ feðSjÞ þ fjdðSj ;TÞ; NjðSj ;TÞ ¼ NeðSjÞ þNjd ðSj ;TÞ ðj ¼ 1; 2Þ:
(8)

The components of Nj parallel to the Xj and Zj axes, respectively, are given by

NXj ¼ Nj cosfj ; NZj ¼ Nj sin fj. (9)

The axis along the centerline of the deck is X. The vertical displacement and twist angle of the deck are
Y(X,T) and y(X,T), respectively, with the initial (equilibrium) shape Yo(X) assumed to be a quadratic
function, and the initial twist to be zero.

4.3. Equations of motion

The equations of motion for the dynamic displacements of the deck are assumed to be

W D

g

q2Y d

qT2
þ EDID

q4Y d

qX 4
þ Kð2Y d � Z1d � Z2d þ 2H cos yd � 2HÞ ¼ Fy, (10)

Ip

q2yd

qT2
þ EDIw

q4yd

qX 4
� GDJD

q2yd

qX 2
� 1:5EDIn

qyd

qX

� �2 q2yd

qX 2

þ KðZ1d � Z2d þ 2D sin ydÞD cos yd ¼My. ð11Þ

Here K is the stiffness of the hangers on one edge of the deck (per unit length along the deck), g is
gravitational acceleration, and Fy and My are, respectively, the vertical force and pitching moment per unit
length along the deck (due to structural damping and aerodynamic excitation).

Based on geometry and dynamic equilibrium, the governing equations for the coordinates and for the axial
force components of cable j are

qX j

qSj

¼ cos fj;
qZj

qSj

¼ sin fj ;
qNXj

qSj

¼W C

q2X jd

qT2
, (12,13,14)

qNZj

qSj

¼W C þ
1

2
W D

qX j

qSj

þ
W C

g

q2Zjd

qT2
� KðY d �D sin yd � Zjd þH cos yd �HÞ. (15)

In the second term in parentheses in Eq. (15), the plus sign is for cable 2 and the minus sign is for cable 1.
The inextensibility condition for cable j is given by

qX j

qSj

� �2

þ
qZj

qSj

� �2

¼ 1. (16)
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Also, Eqs. (9), (12), and (13) lead to the following condition, since the resultant force in each cable acts
along the cable tangent:

NXj

qZj

qSj

¼ NZj

qX j

qSj

. (17)

The analysis is conducted in terms of the following nondimensional quantities:

yd ¼
Y d

D
; xj ¼

X j

D
; zj ¼

Zj

D
sj ¼

Sj

D
; h ¼

H

D
; l ¼
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D
; a ¼

l

2
; lH ¼
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D
; s ¼

LC

L
,

t ¼ T

ffiffiffiffiffiffi
g

D
;

r
o ¼ O

ffiffiffiffiffiffi
D

g
;

s
k ¼

KD

W D

; f y ¼
Fy

W D

; my ¼
My

W DD
; nj ¼

Nj

W DD
; nxj ¼

NXj

W DD
,

nzj ¼
NZj

W DD
; l ¼

s4EDID

W DD3
; iP ¼

IPg

W DD2
; iw ¼

s4EDIw

W DD5
; gD ¼

s2GDJD

W DD3
; in ¼

1:5s4EDIn

W DD5
,

wC ¼
W C

W D

. ð18Þ

In Eqs. (18), s is the ratio of the equilibrium cable length to the span length, and is determined from the
subsequent equilibrium analysis. For simplicity, the coordinate along the span is assumed to be proportional
to the arc length along the cables, so that X ¼ S/s and x ¼ s/s where the subscript j is deleted on the arc
length.

The values for the nondimensional parameters are as follows:

l ¼ 146:18; a ¼ 73:09; s ¼ 1:018; h ¼ 0:205; o ¼ 0:978; l ¼ 2527,

iP ¼ 0:4744; iw ¼ 2527; gD ¼ 0:03845; in ¼ 367; 500; wC ¼ 0:1674. ð19Þ

In dimensional terms, the initial height of the deck is assumed to be

Y oðSÞ ¼ 4DoSðLC � SÞ=ðL2
CÞ. (20)

The vertical equilibrium length of the hanger model at S is given by

LH ðSÞ ¼ Do þ Lo þ L1 � Y oðSÞ � jZeðSÞj. (21)

Letting the spacing between sets of hangers be denoted DH, the stiffness per unit length of the hanger
continuum along one edge of the deck is

KðSÞ ¼ 4EHAH=½DHLH ðSÞ�. (22)

The nondimensional equations of motion for the deck have the form

q2yd

qt2
þ l

q4yd

qs4
þ kð2yd � z1d � z2d þ 2h cos yd � 2hÞ ¼ f y, (23)

ip
q2yd

qt2
þ iw

q4yd

qs4
� gD

q2yd

qs2
� in

qyd

qs

� �2 q2yd

qs2
þ kðz1d � z2d þ 2 sin ydÞ cos yd ¼ my. (24)

The governing nondimensional equations for the cables are

qnxj

qsj

¼ wC

q2xj

qt2
, (25)

qnzj

qsj

¼ wC þ
1

2

qxj

qsj

þ wC

q2zj

qt2
� kðyd � sin yd � zjd þ h cos yd � hÞ, (26)

qxj

qsj

� �2

þ
qzj

qsj

� �2

¼ 1, (27)
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nxj

qzj

qsj

¼ nzj

qxj

qsj

. (28)

Eqs. (23), (24), and (25)–(28) with j ¼ 1 and 2 comprise a set of 10 coupled, nonlinear, partial differential
equations governing the dynamic behavior of the central span.

4.4. Equilibrium solution

For equilibrium, the subscript j is deleted, fy and my are zero, the dynamic components of the variables are
zero, and the accelerations are zero. From Eqs. (25) and (26),

nxe ¼ constant;
dnze

ds
¼ wC þ

1

2

dxe

ds
. (29)

With the use of Eqs. (27) and (28), one can obtain an equation only involving the vertical tension
component nze(s) and the constant horizontal tension component nxe:

dnze

ds
¼ wC þ

nxe

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

xe þ n2
ze

p . (30)

To compute the equilibrium shapes of the cables, instead of using Eq. (30), it is convenient to use the
equilibrium equations involving the total tension ne(s) and the cable rotation fe(s):

dxe

ds
¼ cos fe;

dze

ds
¼ sin fe; ne

dfe

ds
¼ wC þ

1

2
cos fe

� �
cos fe;

dne

ds
¼ wC þ

1

2
cos fe

� �
sin fe. (31)

A shooting method was applied using Mathematica on the right half of a cable, with a new arc length whose
origin was at the cable midpoint. The half arc length a and the tension at the midpoint were varied until the
nondimensional ‘‘end conditions’’ of the half span horizontal length being 71.79 and the cable sag being 11.90
were satisfied with sufficient accuracy. The solution gave the values of l, a, and s in Eqs. (19), along with the
value of nxe, and led to the approximate formulas

zeðsÞ ¼ � 11:9þ 2:2276� 10�3ðs� aÞ2,

xeðsÞ ¼ s� 3:317� 10�6ðs3 � 3as2 þ 3a2sÞ,

kðsÞ ¼
500

lH ðsÞ
; lH ðsÞ ¼ 0:2564þ 0:0024ðs� aÞ2,

nxe ¼ 144:9; nzeðsÞ ¼ 0:667054ðs� aÞ � 1:56917� 10�6ðs� aÞ3,

feð0Þ ¼ �18:38
� ¼ �0:3207 rad. ð32Þ

In Eqs. (32), the vertical equilibrium shape of the cables is approximated by a quadratic function of the arc
length. The total cable tension ne varies from 152.7 at the towers to 144.9 at midspan. The distributed hanger
stiffness k(s) along one edge is plotted in Fig. 14. It ranges from about 38 at the ends to about 1950
at midspan.

4.5. Torsional oscillations of central span

Eqs. (23)–(28) are considered. They involve 10 variables: the coupled vertical and torsional motions of the
deck, and the vertical and horizontal components of the motions and tensions of the cables. The variables are
written in a form such as in Eqs. (8), with an equilibrium part and a dynamic part. For example, the vertical
motion of cable 1 is written as ze(s)+z1d(s, t). The equilibrium functions are known from Eqs. (20) and (32),
along with ye ¼ 0.

The observed features of the predominant motion of the Tacoma Narrows Bridge during its final hour are
utilized. The dimensional frequency of 0.2Hz gives o ¼ 0.978. The slippage amplitude of 0.51m (1.67 ft) at the
midspan of cable 2 means that the amplitude of x2d at s ¼ a is 0.08547. The maximum amplitude of yd is 351
(0.61 rad). The cables are assumed to have no vertical displacement at the tops of the towers. Their vertical
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Fig. 15. Vertical components of motions of cables for one period: (a) cable 2 and (b) cable 1.

Fig. 14. Hanger stiffness versus arc length.
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motions (from equilibrium) are assumed to be out of phase with each other and to be given by

z2dðs2; tÞ ¼ zo sin
ps2

a

� �
sin ot; z1dðs1; tÞ ¼ �z2d ðs1; tÞ. (33)

These functions are plotted for one cycle in Fig. 15, using the amplitude zo that will be chosen later to give
the maximum twist angle of 351. Both arc lengths are denoted s, with 0oso146.18. The nondimensional
period of the motion is 6.425.

The shape of cable 2 is assumed to be similar to that shown in Fig. 6, so that x2d is zero at the ends of the
span and has magnitude 0.08547 at the center. A similar motion must have been exhibited by cable 1, despite
the fact that there was no slippage. Steinman [21] conjectured that ‘‘side-span participation’’ or tower motions
could have allowed this to happen. Extensibility of the cables, slipping of the cables over the saddles, vertical
motion of the deck at midspan, and lateral motions could also have been factors. It is assumed here that the
main contribution was twisting of the tops of the towers. Tower twist is described in Ref. [86] for suspension
bridges in general, and in Ref. [87] with respect to the Tacoma Narrows Bridge. Shortly after the collapse,
Averill [13] wrote that the two legs of each tower twisted and moved opposite to each other during the
torsional motion of the deck. Here the horizontal dynamic displacement x1d is assumed to be zero at midspan
and to have an amplitude of 0.08547 at its ends. The assumptions for x1d and x2d correspond to a twist
amplitude of the tops of the towers of 2.45o (0.043 rad) when viewed from above (along with bending with a
longitudinal amplitude of 0.08547/2).

To obtain an approximate formula for the horizontal dynamic displacement x2d of cable 2, the
inextensibility condition is utilized. The expression x2 ¼ xe+x2d is substituted into Eq. (27) with j ¼ 2, and the
squared terms are expanded. Then dxe/ds2 is approximated by unity, and the squares of the derivatives of ze
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and z2d with respect to s are neglected compared to the linear terms in the dynamic variables. The result is

qx2d

qs2
¼

dze

ds2

qz2d

qs2
. (34)

Eq. (34) is integrated with respect to s2. The resulting form is used for x2d, and the amplitude at midspan is
chosen to be 0.08547. The resulting function, along with the corresponding function x1d obtained by changing
the sign of x2d and shifting so that its midspan amplitude is zero, are

x2d ðs2; tÞ ¼ �8� 10�6a a cos
ps2

a

� �
þ pðs2 � aÞ sin

ps2

a

� �
� a

h i
sin ot,

x1d ðs1; tÞ ¼ 0:08547 sin ot� x2dðs1; tÞ. ð35Þ

These functions satisfy the inextensibility condition approximately.
Fig. 16 depicts the horizonal dynamic cable displacements given in Eq. (35). Their shapes at t ¼ 1.606 (one-

quarter of the period of motion) are shown in Fig. 17. For cable 2, the displacement is zero at the towers, and
its maximum value is not at midspan, but is 0.110 at s ¼ 36.5 and 109.6. Cable 1 exhibits its maximum
dynamic horizontal motion at the towers.

Next, the dynamic horizontal tension components in the cables are obtained by integration of Eq. (25), after
using Eqs. (32) for the equilibrium cable forces, and Eqs. (35). This leads to

nx2dðs2; tÞ ¼ 8� 10�6wCo2a2 2a

p
sin

ps2

a

� �
þ ða� s2Þ cos

ps2

a

� �
� s2

� �
sin ot,

nx1dðs1; tÞ ¼ � 0:08547wCo2 sin ot� nx2dðs1; tÞ. ð36Þ

The dynamic vertical tension components are computed with the use of Eq. (28). The expressions for nz2d

and nz1d, determined with Mathematica, are extremely complicated. The total dynamic tension in each cable
can then be obtained from these components, and the results, n2d(s, t) and n1d(s, t), are plotted in Fig. 18 for
one period of motion. They are out of phase with each other, and their maximum values are 1.08, i.e., less than
1% of the tension at equilibrium. In dimensional terms, the maximum static tension is 56,600 kN
(12.7� 106 lb) and the maximum additional tension due to the motion is 400 kN (90,000 lb).

The twist angle of the deck is obtained by subtracting the two equations in Eq. (26), j ¼ 1 and 2, from each
other. After making use of Eqs. (33) and (35), this results in

sin yd ¼
1

2k

qnz1d

qs
�

qnz2d

qs
þ

qx2d

qs
þ 2ðk � wCo2Þz2d

� �
. (37)

The amplitude zo in Eq. (33) is now chosen to be 0.57 so that the maximum value of yd is 351. To find the
vertical displacement of the centerline of the deck, the two equations in Eq. (26) are added, which yields, after
Fig. 16. Horizontal in-plane components of motions of cables for one period: (a) cable 2 and (b) cable 1.



ARTICLE IN PRESS

Fig. 17. Horizontal in-plane components of motions of cables versus arc length when t ¼ p/(2o): (a) cable 2 and (b) cable 1.

Fig. 18. Dynamic tension in cables for one period: (a) cable 2 and (b) cable 1.
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using Eqs. (29), (33), and (35),

yd ¼
1

2k
2khð1� cos ydÞ �

qnz2d

qs
�

qnz1d

qs

� �
. (38)

The resulting functions for the twist angle yd(s, t) and the displacement yd(s, t) are plotted for one period
in Fig. 19.

If the deck were clamped at the towers, then yd, yd, and their first partial derivatives with respect to s would
be zero at s ¼ 0 and l. The last condition comes from the use of nonuniform torsion and the longitudinal
displacement at the towers being zero [88]. These boundary conditions were not utilized in the procedure
above. In the results, the maximum magnitudes of yd, yd, and their first partial derivatives with respect to s at
the ends of the central span are 0.00030, 0.00010, 0.00093, and 0.025, respectively. The maximum magnitude
of yd at midspan is 1.09� 10�6.

The shape of the plot for yd in Fig. 19(a) is similar to that for z2d in Fig. 15(a), although the boundary
conditions are not the same. The vertical displacement yd in Fig. 19(b) has a completely different shape from
the other functions. Its amplitude is only 0.037, though, corresponding to a dimensional amplitude of 0.21m
(0.71 ft). Due to the assumed shapes for the vertical cable displacements in Eq. (33), the solution here is
dominated by torsion, and the flexural motion of the deck is very small. However, the maximum vertical
displacement of the edges of the deck, from equilibrium, is 4.2m (14 ft) in this solution, as observed during the
hour before the collapse.

The nondimensional resultant vertical force fy(s, t) per unit length along the centerline of the deck due to the
damping and aerodynamic effects is computed from Eq. (23). The result is plotted in Fig. 20. The force is
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Fig. 20. Resultant vertical force on deck per unit length, due to damping and aerodynamic excitation.

Fig. 19. Deck motions for one cycle: (a) twist angle and (b) vertical motion of centerline.
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positive if acting upward on the deck. Its maximum value is 0.116 and its minimum value is �0.229,
corresponding in dimensional terms to 7.3 kN/m (495 lb/ft) and �14.4 kN/m (�977 lb/ft), respectively. Hence
the largest downward force is about twice as big as the largest upward force.

Finally, the nondimensional resultant pitching moment my per unit length along the deck is determined
from Eq. (24). In addition, the approximate pitching moment myA obtained from Eq. (24) without the second,
third, and fourth terms is computed (i.e., assuming that the torsional stiffness of the deck is negligible
compared to the torsional moment due to the hangers and the rotational inertia of the deck). These functions
are plotted in Fig. 21, and represent the combined moment due to damping and aerodynamic effects.

The maximum amplitude of my is 0.204, corresponding to a dimensional value of 75.6 kNm/m
(17,000 lb ft/ft). The maximum amplitude of myA is 0.212. Even though the maximum values are close, the
shapes of the functions are quite different.

During this limit cycle, the moment my is out of phase with the twist angle yd (see Figs. 19(a) and 21(a)) and
with the rate of change of the twist angle. Except near the ends of the span (s ¼ 0, l), the shape of the moment
my(s, t) in Fig. 21(a) has some resemblance to the shape of the fifth power of �yd(s, t), or, with a phase lag, to
the shape of the fifth power of yd(s, t�0.5tf) where tf is the period 2p/o. The shape of my(s, t) also resembles the
shape of the fifth power of b(s,t–0.75tf) where b ¼ qyd/qt.

The structural damping in the original Tacoma Narrows Bridge was much lower than that in typical
suspension bridges [13]. Therefore the functions fy and my may be dominated by wind effects, including
aerodynamic damping. Since the functions are not zero at the ends of the central span, they cannot be written
as a power series in the deck’s displacements and velocities if those variables are zero at the towers, without
including a term that is independent of those variables.
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Fig. 21. Resultant pitching moment on deck per unit length, due to damping and aerodynamic excitation: (a) including torsional stiffness

of deck and (b) neglecting torsional stiffness of deck.
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5. Concluding remarks

The original Tacoma Narrows Bridge exhibited vertical oscillations from the time that it was constructed,
but these oscillations did not cause any significant damage. The bridge was stable with respect to torsional
motion until the north midspan cable band loosened, allowing the north suspension cable to move
longitudinally through it. The loosening of the cable band was probably due in part to snap loads in the two
diagonal ties that connected the band to the plate girder along the edge of the deck. This led to about 700
cycles of torsional oscillation for approximately 1 hour until the deck broke up and the central span collapsed.
The behavior of the cable band just prior to torsional motion, and the subsequent steady-state torsional
oscillations, were considered here.

Models for the tie forces were described in Section 2. Then a continuum model was formulated in Section 3
for the deck, suspension cables, and hangers in the main span. Making use of the known conditions during the
torsional oscillations and some assumed shapes for the cable motions, an approximate solution was obtained
in Section 4 for the cable tension, deck motion, and resultant force and moment acting on the deck due to
damping and aerodynamic excitation.

The shift from vertical to torsional oscillations was not due to an increase in wind speed. Also, it was not
due to a nonlinear system switching from one limit cycle to another, as conjectured in some previous analyses.
Instead, the system changed, and the local reduction of frictional resistance in the north midspan cable
band allowed torsional motion to be initiated. The flutter response quickly went into a limit cycle that was
dominated by torsion of the deck.

A linear analysis is not adequate to describe this motion. The rotational stiffness of the deck cannot be
modeled only by linear terms for uniform and nonuniform torsion. The aerodynamic forces and moments
cannot be modeled simply as linear functions of the displacements and velocities. In the analysis presented
here, the combined aerodynamic and damping effects were determined from the known properties of the
motion (i.e., an inverse approach was utilized). The continuum model for the central span was more general
than previous models in various aspects, and included large twist angles of the deck, large motions of the
cables, transverse and longitudinal inertias of the cables, and hanger stiffnesses that varied along the deck.

It was assumed that the motion of the south cable involved longitudinal displacements associated with
twisting of the towers. For the north cable, longitudinal slippage of the cable with an amplitude of 0.51m
(1.67 ft) at midspan was modeled. The other cable bands apparently did not show evidence of slippage. The
longitudinal motions of those bands, required for the motions of the cables during torsion, were probably
accommodated largely by rotation of the hangers in their vertical plane. For example, the set of hangers
adjacent to midspan had a vertical length of about 1.6m (5.3 ft). To handle a longitudinal (horizontal)
amplitude of about 0.5m (1.6 ft) would require a rotation of these hangers (in the vertical plane) of about 171
(0.3 rad). Extensibility of the hangers and longitudinal motion of the deck may have assisted in allowing the
required longitudinal motions of the cable bands and reduced such rotations of the hangers.
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The bridge was the third longest suspension bridge in the world at the time. Relative to similar bridges, it
was very light, slender, and flexible, and in particular had low torsional stiffness. The midspan diagonal ties
were flexible and insufficiently pretensioned. The cable bands were lighter than those used in previous bridges.
The US government’s desire to spend significantly less money on the bridge than estimated for the initial
design was the motivation for the radical design of the deck. The result was disastrous, but led to new
investigations and understanding of the dynamic behavior of long-span suspension bridges.
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[1] O.H. Ammann, T. von Kármán, G.B. Woodruff, The failure of the Tacoma Narrows Bridge: a report to the Honorable John M.

Carmody, Administrator, Federal Works Agency, Washington, DC, March 28, 1941. Also in: The Failure of the Tacoma Narrows

Bridge: A Reprint of Original Reports, Advisory Board on the Investigation of Suspension Bridges, Bulletin No. 78 of the Agricultural

and Mechanical College of Texas, Fourth Series, Vol. 15, No. 1, School of Engineering, Texas Engineering Experiment Station,

College Station, Texas, January 1, 1944.

[2] F.B. Farquharson, Aerodynamic stability of suspension bridges with special reference to the Tacoma Narrows

Bridge, Part I—Investigations prior to October 1941, Bulletin No. 116, University of Washington Engineering Experiment

Station, 1949.

[3] F.C. Smith, G.S. Vincent, Aerodynamic stability of suspension bridges with special reference to the Tacoma Narrows Bridge,

Part II—Mathematical analyses, Bulletin No. 116, University of Washington Engineering Experiment Station, 1950.

[4] F.B. Farquharson, Aerodynamic stability of suspension bridges with special reference to the Tacoma Narrows Bridge, Part III—The

investigation of models of the original Tacoma Narrows Bridge under the action of wind, Bulletin No. 116, University of Washington

Engineering Experiment Station, 1952.

[5] F.B. Farquharson, Aerodynamic stability of suspension bridges with special reference to the Tacoma Narrows Bridge,

Part IV—Model investigations which influenced the design of the new Tacoma Narrows Bridge, Bulletin No. 116, University of

Washington Engineering Experiment Station, 1952.

[6] G.S. Vincent, Aerodynamic stability of suspension bridges with special reference to the Tacoma Narrows Bridge, Part V—Extended

studies: Logarithmic decrement, field damping, prototype predictions, four other bridges, Bulletin No. 116, University of Washington

Engineering Experiment Station, 1954.

[7] R. Scott, In the Wake of Tacoma, American Society of Civil Engineers, Reston, VA, 2001.

[8] R.S. Hobbs, Catastrophe to Triumph: Bridges of the Tacoma Narrows, Washington State University Press, Pullman, WA, 2006.

[9] http://www.wsdot.wa.gov/TNBhistory.

[10] http://www.lib.washington.edu/specialcoll/exhibits/tnb/.

[11] http://search.tpl.lib.wa.us/images/dt3.asp.

[12] K.Y. Billah, R.H. Scanlan, Resonance, Tacoma Narrows Bridge failure, and undergraduate physics textbooks, American Journal of

Physics 59 (1991) 118–124.

[13] W.A. Averill, Collapse of the Tacoma Narrows Bridge, Pacific Builder and Design 46 (12/1940) 20–27.

[14] M. Levy, M. Salvadori, Why Buildings Fall Down, W.W. Norton & Company, New York, 2002 (Chapter 7).

[15] C.E. Paine, H. Cross, S. Hardesty, H.D. Robinson, W.M. Wilson, The failure of the suspension bridge over Tacoma Narrows, Report

to the Narrows Bridge Loss Committee (Paul Carew, Chairman) on the damage produced by the failure, June 2, 1941, Seattle, WA,

in: The Failure of the Tacoma Narrows Bridge: A Reprint of Original Reports, Advisory Board on the Investigation of Suspension

Bridges, Bulletin No. 78 of the Agricultural and Mechanical College of Texas, Fourth Series, Vol. 15, No. 1, School of Engineering,

Texas Engineering Experiment Station, College Station, Texas, January 1, 1944.

[16] L.J. Sverdrup, F. Donaldson, R.G. Cone, Report of the Board of Investigation, Tacoma Narrows Bridge: Part I, Amount of

Loss (2/3/41); Part II, Cause of Collapse (6/26/41); Part III, Special Report on Main Towers (6/26/41), in: The Failure of the Tacoma

Narrows Bridge: A Reprint of Original Reports, Advisory Board on the Investigation of Suspension Bridges, Bulletin No. 78 of the

Agricultural and Mechanical College of Texas, Fourth Series, Vol. 15, No. 1, School of Engineering, Texas Engineering Experiment

Station, College Station, Texas, January 1, 1944.

[17] C.H. Eldridge, The Tacoma Narrows Bridge, Civil Engineering (ASCE) 10 (5/1940) 299–302.

[18] H.F. Donnelly, Report on the Construction of the Superstructure, Tacoma Narrows Bridge Collection, Washington State Archives,

Olympia, WA, 1940.

http://www.wsdot.wa.gov/TNBhistory
http://www.lib.washington.edu/specialcoll/exhibits/tnb/
http://search.tpl.lib.wa.us/images/dt3.asp


ARTICLE IN PRESS
R.H. Plaut / Journal of Sound and Vibration 309 (2008) 613–636 635
[19] M. Brumer, H. Rothman, M. Fiegen, B. Forsyth, Verrazano-Narrows Bridge: design of superstructure, Journal of the Construction

Division (ASCE) 92 (CO1) (1966) 23–70.

[20] A. Bowers, Model tests showed aerodynamic instability of Tacoma Narrows Bridge, Engineering News-Record 125 (11/21/1940)

44–47.

[21] D.B. Steinman, Rigidity and aerodynamic stability of suspension bridges, Transactions of the American Society of Civil Engineers 110

(1945) 439–475 (discussion 476–580).

[22] V.I. Babitsky, Theory of Vibro-Impact Systems and Applications, Springer, Berlin, 1998.

[23] B. Brogliato, Nonsmooth Mechanics: Models, Dynamics, and Control, Springer, London, 1999.

[24] H. Luo, S. Hanagud, On the dynamics of vibration absorbers with motion-limiting stops, Journal of Applied Mechanics 65 (1998)

223–233.

[25] E.A. Butcher, D.J. Segalman, Characterizing damping and restitution in compliant impacts via modified K– V and higher-order linear

viscoelastic models, Journal of Applied Mechanics 67 (2000) 831–834.

[26] A. Narimani, M.F. Golnaraghi, G. Nakhaie Jazar, Sensitivity analysis of the frequency response of a piecewise linear system in a

frequency island, Journal of Vibration and Control 10 (2004) 175–198.

[27] A.L. Farmer, R.H. Plaut, M.M. Holland, Bouncing-ball model of ‘‘dry’’ motions of a tethered buoy, Journal of Vibration and

Acoustics 123 (2001) 333–339.

[28] R.H. Plaut, W.T. Fielder, L.N. Virgin, Fractal behavior of an asymmetric rigid block overturning due to harmonic motion of a tilted

foundation, Chaos, Solitons & Fractals 7 (1996) 177–196.

[29] S. Wolfram, The Mathematica Book, third ed., Cambridge University Press, Cambridge, UK, 1996.

[30] H.M. Lankarani, P.E. Nikravesh, A contact force model with hysteresis damping for impact analysis of multibody systems, Journal of

Mechanical Design 112 (1990) 369–376.

[31] G. Wegener, R. Markert, Influence of contact and impacts on the dynamics of an elastic rotor with an elastic retainer bearing, in:

V.I. Babitsky (Ed.), Dynamics of Vibro-Impact Systems, Springer, Berlin, 1999, pp. 89–98.

[32] R. Jankowski, Non-linear viscoelastic modelling of earthquake-induced structural pounding, Earthquake Engineering and Structural

Dynamics 34 (2005) 595–611.

[33] T.C. Kim, T.E. Rook, R. Singh, Effect of nonlinear impact damping on the frequency response of a torsional system with clearance,

Journal of Sound and Vibration 281 (2005) 995–1021.

[34] S. Muthukumar, R. Desroches, A Hertz contact model with non-linear damping for pounding simulation, Earthquake Engineering

and Structural Dynamics 35 (2006) 811–828.

[35] S. Abrate, R. Dooley, R. Kaste, G. Thibault, W. Millette, Nonlinear dynamic behavior of parachute static lines, Composite Structures

61 (2003) 3–12.

[36] C.M. Hennessey, N.J. Pearson, R.H. Plaut, Experimental snap loading of synthetic ropes, Shock and Vibration 12 (2005)

163–175.

[37] J.C. Ryan, Analytical and Experimental Investigation of Improving Seismic Performance of Steel Moment Frames Using

Synthetic Fiber Ropes, PhD Dissertation, Virginia Tech, Blacksburg, VA, 2006 /http://scholar.lib.vt.edu/theses/available/

etd-10282006-094904/S.

[38] R.H. Plaut, F.M. Davis, Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges, Journal of

Sound and Vibration, to appear.

[39] A.C. Lazer, P.J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear

analysis, SIAM Review 32 (1990) 537–578.

[40] Y.S. Choi, K.C. Jen, P.J. McKenna, The structure of the solution set for periodic oscillations in a suspension bridge model, IMA

Journal of Applied Mathematics 47 (1991) 283–306.

[41] S.H. Doole, S.J. Hogan, A piecewise linear suspension bridge model: nonlinear dynamics and orbit continuation, Dynamics and

Stability of Systems 11 (1996) 19–47.

[42] A.R. Champneys, P.J. McKenna, On solitary waves of a piecewise linear suspended beam model, Nonlinearity 10 (1997) 1763–1782.

[43] L.D. Humphreys, P.J. McKenna, Multiple periodic solutions for a nonlinear suspension bridge equation, IMA Journal of Applied

Mathematics 63 (1999) 37–49.

[44] A.R. Champneys, P.J. McKenna, P.A. Zegeling, Solitary waves in nonlinear beam equations: stability, fission and fusion, Nonlinear

Dynamics 21 (2000) 31–53.

[45] A. Fonda, Z. Schneider, F. Zanolin, Periodic oscillations for a nonlinear suspension bridge model, Journal of Computational and

Applied Mathematics 52 (1994) 113–140.

[46] Y. An, C. Zhong, Periodic solutions of a nonlinear suspension bridge equation with damping and nonconstant load, Journal of

Mathematical Analysis and Applications 279 (2003) 569–579.

[47] M.S.T. de Freitas, R.L. Viana, C. Grebogi, Erosion of the safe basin for the transversal oscillations of a suspension bridge, Chaos,

Solitons & Fractals 18 (2003) 829–841.

[48] M.S.T. de Freitas, R.L. Viana, C. Grebogi, Basins of attraction of periodic oscillations in suspension bridges, Nonlinear Dynamics 37

(2004) 207–226.

[49] M.S.T. de Freitas, R.L. Viana, C. Grebogi, Multistability, basin boundary structure, and chaotic behavior in a suspension bridge

model, International Journal of Bifurcation and Chaos 14 (2004) 927–950.

[50] H. Petroski, Still twisting, American Scientist 79 (1991) 398–401.

[51] D. Berreby, The great bridge controversy, Discover 13 (2/1992) 26–33.
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